p(x)-Laplacian-like Neumann problems in variable-exponent Sobolev spaces via topological degree methods

نویسندگان

چکیده

In this paper, we investigate the existence of a ?weak solutions? for Neumann problems p(x)-Laplacian-like operators, originated from capillary phenomena, following form {?div( |?u|p(x)?2?u + |?u|2p(x)?2?u /?1 |?u|2p(x))= ?f (x, u,?u) in ?,(|?u|p(x)?2?u |?u|2p(x)?2 ?u/ ?|?u|2p(x)) ?u/?? = 0 on ??, setting variable-exponent Sobolev spaces W1,p(x)(?), where ? is smooth bounded domain RN, p(x) C+(??) and real parameter. Based topological degree class demicontinuous operators generalized (S+) type theory spaces, obtain result weak solutions to considered problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear eigenvalue problems in Sobolev spaces with variable exponent

Abstract. We study the boundary value problem −div((|∇u|1 + |∇u|2)∇u) = f(x, u) in Ω, u = 0 on ∂Ω, where Ω is a smooth bounded domain in R . We focus on the cases when f±(x, u) = ±(−λ|u| u+ |u|u), where m(x) := max{p1(x), p2(x)} < q(x) < N ·m(x) N−m(x) for any x ∈ Ω. In the first case we show the existence of infinitely many weak solutions for any λ > 0. In the second case we prove that if λ is...

متن کامل

p-Laplacian problems with critical Sobolev exponent

We use variational methods to study the asymptotic behavior of solutions of p-Laplacian problems with nearly subcritical nonlinearity in general, possibly non-smooth, bounded domains.

متن کامل

Three solutions to a p(x)-Laplacian problem in weighted-variable-exponent Sobolev space

In this paper, we verify that a general p(x)-Laplacian Neumann problem has at least three weak solutions, which generalizes the corresponding result of the reference [R. A. Mashiyev, Three Solutions to a Neumann Problem for Elliptic Equations with Variable Exponent, Arab. J. Sci. Eng. 36 (2011) 1559-1567].

متن کامل

The Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent

In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.

متن کامل

Vector-valued Inequalities on Herz Spaces and Characterizations of Herz–sobolev Spaces with Variable Exponent

The origin of Herz spaces is the study of characterization of functions and multipliers on the classical Hardy spaces ([1, 8]). By virtue of many authors’ works Herz spaces have became one of the remarkable classes of function spaces in harmonic analysis now. One of the important problems on the spaces is boundedness of sublinear operators satisfying proper conditions. Hernández, Li, Lu and Yan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2022

ISSN: ['2406-0933', '0354-5180']

DOI: https://doi.org/10.2298/fil2217973e